Question:

Three resistors of $ 2\, \Omega $, $ 3\, \Omega $, and $ 6\, \Omega $ are connected in parallel. What is the equivalent resistance of the combination?

Show Hint

Key Fact: In parallel, \( \frac{1}{R_{\text{eq}}} = \sum \frac{1}{R_i} \)
Updated On: May 30, 2025
  • \( 1\, \Omega \)
  • \( 2\, \Omega \)
  • \( 3\, \Omega \)
  • \( 4\, \Omega \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the equivalent resistance \( R_{\text{eq}} \) of resistors connected in parallel, we use the formula: 

\[\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\]

where \( R_1 = 2\, \Omega \), \( R_2 = 3\, \Omega \), and \( R_3 = 6\, \Omega \).

Substituting the given values into the formula:

\[\frac{1}{R_{\text{eq}}} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}\]

Finding a common denominator (6) for the fractions:

\[\frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6}, \quad \frac{1}{6} = \frac{1}{6}\]

Adding the fractions:

\[\frac{1}{R_{\text{eq}}} = \frac{3}{6} + \frac{2}{6} + \frac{1}{6} = \frac{6}{6} = 1\]

Thus:

\[R_{\text{eq}} = \frac{1}{1} = 1\, \Omega\]

Therefore, the equivalent resistance of the combination is \( 1\, \Omega \).

Was this answer helpful?
1
0