The center of mass \( \text{CM} \) of a system of particles is given by the formula:
\[
x_{\text{cm}} = \frac{\sum m_i x_i}{\sum m_i}, \quad y_{\text{cm}} = \frac{\sum m_i y_i}{\sum m_i}
\]
Where \( m_i \) are the masses of the particles, and \( (x_i, y_i) \) are the coordinates of the particles.
Given the coordinates of the three particles placed at vertices A, B, and C of an equilateral triangle of side 1 m, we assign the coordinates of the points:
- \( A = (0, 0) \)
- \( B = (1, 0) \)
- \( C = \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \)
Now, we can calculate the center of mass:
1. x-coordinate:
\[
x_{\text{cm}} = \frac{1 \times 0 + 2 \times 1 + 3 \times \frac{1}{2}}{1 + 2 + 3} = \frac{0 + 2 + 1.5}{6} = \frac{3.5}{6} = \frac{7}{12}
\]
2. y-coordinate:
\[
y_{\text{cm}} = \frac{1 \times 0 + 2 \times 0 + 3 \times \frac{\sqrt{3}}{2}}{1 + 2 + 3} = \frac{0 + 0 + \frac{3\sqrt{3}}{2}}{6} = \frac{\frac{3\sqrt{3}}{2}}{6} = \frac{3\sqrt{3}}{12}
\]
Thus, the center of mass is at \( \left( \frac{7}{12}, \frac{3\sqrt{3}}{12} \right) \).