Using Henry's Law,
\[
X = \frac{P}{K_H} = \frac{0.987}{76.48 \times 10^3}
\]
\[
X = 0.0129 \times 10^{-3}
\]
Since \(n_{N_2} \ll n_{\text{water}}\), we can use the approximation:
\[
n_{N_2} = n_{\text{water}} \times 0.0129 \times 10^{-3}
\]
Where \(n_{\text{water}} = 1000 \, \text{g}\) (1 litre of water) and the molar mass of water is 18 g/mol.
Thus,
\[
n_{N_2} = \frac{1000}{18} \times 0.0129 \times 10^{-3} = 0.000716 \, \text{mol}
\]
Thus, the number of moles of \(N_2\) gas dissolved is \(0.716 \times 10^{-3}\).