If the CFSE of $\left[ Ti \left( H _2 O \right)_6\right]^{3+}$ is $-960 kJ / mol$, this complex will absorb maximum at wavelength ___$nm$ (nearest integer) Assume Planck's constant $( h )=64 \times 10^{-34} Js$, Speed of light $( c )=30 \times 10^8 m / s$ and Avogadro's Constant $\left( N _{ A }\right)=6 \times 10^{23} / mol$
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: