For concentric spherical shells, the potential at a given shell is influenced by the charges on all shells with a smaller radius. Carefully consider the superposition of potentials.
The potential \( V_y \) at point \( y \) is the sum of potentials due to charges \( q_x \), \( q_y \), and \( q_z \):
\[ V_y = \frac{q_x}{4\pi\varepsilon_0 a} + \frac{q_y}{4\pi\varepsilon_0 b} + \frac{q_z}{4\pi\varepsilon_0 c} \]
Substitute the given charges:
\[ q_x = \sigma 4\pi a^2, \, q_y = -\sigma 4\pi b^2, \, q_z = \sigma 4\pi c^2 \]
\[ V_y = \frac{\sigma 4\pi a^2}{4\pi\varepsilon_0 a} - \frac{\sigma 4\pi b^2}{4\pi\varepsilon_0 b} + \frac{\sigma 4\pi c^2}{4\pi\varepsilon_0 c} \]
Simplify each term:
\[ V_y = \frac{\sigma a}{\varepsilon_0} - \frac{\sigma b}{\varepsilon_0} + \frac{\sigma c}{\varepsilon_0} \]
Combine terms:
\[ V_y = \frac{\sigma}{\varepsilon_0} (a - b + c) \]
Using the condition \( c(a - b + c) = a^2 - b^2 + c^2 \), expand and simplify:
\[ c(a - b) + c^2 = a^2 - b^2 + c^2 \]
Cancel \( c^2 \):
\[ c(a - b) = (a + b)(a - b) \]
Factorize:
\[ c = a + b \]
Substitute \( a = 2 \, \text{cm} \) and \( b = 3 \, \text{cm} \):
\[ c = a + b = 2 + 3 = 5 \, \text{cm} \]
The value of \( c \) is:
\( c = 5 \, \text{cm}. \)
Find output voltage in the given circuit.
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: