In parallel combination: Potential difference is the same across all capacitors.
\[ \text{Energy} = \frac{1}{2}(C_1 + C_2 + C_3)V^2 \]
\[ = \frac{1}{2}(25 + 30 + 45) \times (100)^2 \times 10^{-6} = 0.5 = E \]
In series combination: Charge is the same on all.
\[ \frac{1}{C_{\text{equ}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} = \frac{1}{25} + \frac{1}{30} + \frac{1}{45} \]
\[ \frac{1}{C_{\text{equ}}} = \frac{18 + 15 + 10}{450} = \frac{43}{450} \implies C_{\text{equ}} = \frac{450}{43} \]
Energy:
\[ \text{Energy} = \frac{Q^2}{2C_1} + \frac{Q^2}{2C_2} + \frac{Q^2}{2C_3} \]
\[ = \frac{Q^2}{2} \left[ \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right] \]
\[ = \frac{(V \times C_{\text{equ}})^2}{2 \times C_{\text{equ}}} \times \frac{1}{C_{\text{equ}}} = \frac{V^2C_{\text{equ}}}{2} \]
\[ = \frac{(100)^2}{2} \times \frac{450}{43} \times 10^{-6} \]
\[ = \frac{4.5}{86} = \frac{9}{x} \times 0.5 \implies x = 86 \]
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $