List-I ( Ions ) | List-II ( No. of unpaired electrons ) | ||
A | Zn$^{2+}$ | (I) | 0 |
B | Cu$^{2+}$ | (II) | 4 |
C | Ni$^{2+}$ | (III) | 1 |
D | Fe$^{2+}$ | (IV) | 2 |
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: