The final pressure of the system, $P_f$, is calculated using Dalton's law:
\[
P_f V_f = P_1 V_1 + P_2 V_2 + P_3 V_3
\]
Given:
\[
P_1 = 2 \, \text{atm}, \, V_1 = 2 \, \text{L}, \, P_2 = 4 \, \text{atm}, \, V_2 = 3 \, \text{L}, \, P_3 = 3 \, \text{atm}, \, V_3 = 4 \, \text{L}
\]
Total volume:
\[
V_f = V_1 + V_2 + V_3 = 2 + 3 + 4 = 9 \, \text{L}
\]
Total pressure contribution:
\[
P_f V_f = (2 \times 2) + (4 \times 3) + (3 \times 4) = 4 + 12 + 12 = 28 \, \text{atm.L}
\]
Final pressure:
\[
P_f = \frac{28}{9} \approx 3.11 \, \text{atm}
\]
Thus, $P_f \approx 3$ atm.