The energy of an electron in a hydrogen-like atom is given by:
$E_n = -\frac{13.6Z^2}{n^2} \, eV$,
where $Z$ is the atomic number and $n$ is the energy level.
For
$He^+$, $Z = 2$, and for
$Be^{3+}$, $Z = 4$.
The ratio of energies in the ground state and $n = 2$ for $Be^{3+}$ gives:
$\frac{E}{E} = \frac{x}{1} = -x$.
List-I ( Ions ) | List-II ( No. of unpaired electrons ) | ||
A | Zn$^{2+}$ | (I) | 0 |
B | Cu$^{2+}$ | (II) | 4 |
C | Ni$^{2+}$ | (III) | 1 |
D | Fe$^{2+}$ | (IV) | 2 |
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |