Step 1: Write quadratic polynomial in standard form
\[
6x^2 - 7x - 3 = 0
\]
Here $a = 6$, $b = -7$, $c = -3$.
Step 2: Apply quadratic formula
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
\[
x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(-3)}}{2(6)}
\]
\[
x = \frac{7 \pm \sqrt{49 + 72}}{12}
\]
\[
x = \frac{7 \pm \sqrt{121}}{12}
\]
\[
x = \frac{7 \pm 11}{12}
\]
Step 3: Simplify roots
Case 1: $\dfrac{7 + 11}{12} = \dfrac{18}{12} = \dfrac{3}{2}$
Case 2: $\dfrac{7 - 11}{12} = \dfrac{-4}{12} = -\dfrac{1}{3}$
Step 4: Conclusion
The roots are $\tfrac{3}{2}$ and $-\tfrac{1}{3}$.
The correct answer is option (B).
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table: