Step 1: Write quadratic polynomial in standard form
\[
6x^2 - 7x - 3 = 0
\]
Here $a = 6$, $b = -7$, $c = -3$.
Step 2: Apply quadratic formula
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
\[
x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(-3)}}{2(6)}
\]
\[
x = \frac{7 \pm \sqrt{49 + 72}}{12}
\]
\[
x = \frac{7 \pm \sqrt{121}}{12}
\]
\[
x = \frac{7 \pm 11}{12}
\]
Step 3: Simplify roots
Case 1: $\dfrac{7 + 11}{12} = \dfrac{18}{12} = \dfrac{3}{2}$
Case 2: $\dfrac{7 - 11}{12} = \dfrac{-4}{12} = -\dfrac{1}{3}$
Step 4: Conclusion
The roots are $\tfrac{3}{2}$ and $-\tfrac{1}{3}$.
The correct answer is option (B).
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]