We need the set of all real parameters \(a \ne 1\) for which both roots of the quadratic \( (1-a)x^2 + 2(a-3)x + 9 = 0 \) are positive. Then identify it as \( (-\infty,-\alpha] \cup [\beta,\gamma] \) and compute \( 2\alpha+\beta+\gamma \).
For a quadratic \(Ax^2+Bx+C=0\) to have both roots positive, we require (i) real roots: \( \Delta=B^2-4AC\ge 0 \), (ii) sum of roots \( S=-\dfrac{B}{A}>0 \), and (iii) product of roots \( P=\dfrac{C}{A}>0 \).
Step 1: Identify coefficients.
\[ A=1-a,\qquad B=2(a-3),\qquad C=9. \]
Step 2: Product condition \(P>0\).
\[ P=\frac{C}{A}=\frac{9}{1-a}>0 \;\Rightarrow\; 1-a>0 \;\Rightarrow\; a<1. \]
Step 3: Sum condition \(S>0\).
\[ S=-\frac{B}{A}=\frac{2(a-3)}{a-1}. \] Since \(a<1\) (from Step 2), denominator \(a-1<0\). For \(S>0\) we need \(a-3<0\), i.e. \(a<3\), which is automatically true for \(a<1\). Hence the sum condition adds no new restriction beyond \(a<1\).
Step 4: Discriminant condition \(\Delta\ge 0\).
\[ \Delta=B^2-4AC=4(a-3)^2-36(1-a)=4\big[(a-3)^2-9(1-a)\big] =4\big(a^2+3a\big)=4a(a+3)\ge 0. \] \[ \Rightarrow\quad a\le -3 \;\; \text{or} \;\; a\ge 0. \]
Step 5: Combine with \(a<1\) (from Step 2):
\[ a\in(-\infty,-3]\ \cup\ [0,1). \] Given the problem states \(a\in\mathbb{R}\setminus\{1\}\), this can be written as \( (-\infty,-3] \cup [0,1] \) with the implicit exclusion of \(a=1\). Thus, \[ \alpha=3,\quad \beta=0,\quad \gamma=1. \]
\[ 2\alpha+\beta+\gamma=2\cdot 3+0+1=\boxed{7}. \]
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
