The reaction of magnesium with hydrochloric acid is:
\[ \text{Mg} + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2 \]
The number of moles of magnesium (\( n \)) is given by:
\[ n = \frac{w}{M} = \frac{2.4 \, \text{g}}{24 \, \text{g/mol}} = 0.1 \, \text{mol}. \]
From the balanced equation, 1 mole of \( \text{Mg} \) produces 1 mole of \( \text{H}_2 \). Therefore:
\[ \text{Moles of } \text{H}_2 = 0.1 \, \text{mol}. \]
The volume of 1 mole of gas at STP is 22.4 L. Thus, the volume of \( 0.1 \, \text{mol} \) of \( \text{H}_2 \) is:
\[ V = n \times 22.4 \, \text{L/mol} = 0.1 \, \text{mol} \times 22.4 \, \text{L/mol} = 2.24 \, \text{L} = 224 \times 10^{-2} \, \text{L}. \]
The volume of hydrogen liberated at STP is \( 224 \times 10^{-2} \, \text{L} \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: