Among $ 10^{-10} $ g (each) of the following elements, which one will have the highest number of atoms?
Element : Pb, Po, Pr and Pt
$\text{No. of atoms} = \frac{\text{Mass in g}}{\text{Molar Mass (g/mol)}} \times N_A$
Therefore for the same Mass element having the least Molar mass will have the higher no. of atoms.
$M_{Pb} = 209$
$M_{Pr} = 141$
$M_{Po} = 207$
$M_{Pt} = 195$
Calculate the number of moles present in 9.10 × 1016 kg of water.
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to