For an adiabatic process, the relation between pressure and volume is:
\[ P_iV_i^\gamma = P_fV_f^\gamma, \] where \(\gamma = 1.5\).
Substitute the given volumes (\(V_i = 5 \, \text{litres}, V_f = 4 \, \text{litres}\)):
\[ P_i (5)^{1.5} = P_f (4)^{1.5}. \]
Rearranging for \(\frac{P_i}{P_f}\):
\[ \frac{P_i}{P_f} = \frac{(4)^{1.5}}{(5)^{1.5}}. \]
Simplify:
\[ \frac{P_i}{P_f} = \left(\frac{4}{5}\right)^{1.5}. \]
Write \(1.5\) as \(\frac{3}{2}\):
\[ \frac{P_i}{P_f} = \left(\frac{4}{5}\right)^{\frac{3}{2}} = \left(\frac{4}{5}\right)^1 \times \left(\frac{4}{5}\right)^{\frac{1}{2}}. \]
Simplify each term:
\[ \frac{P_i}{P_f} = \frac{4}{5} \times \sqrt{\frac{4}{5}} = \frac{4}{5} \times \frac{2}{\sqrt{5}} = \frac{8}{5\sqrt{5}}. \]
Final Answer: \(\frac{8}{5\sqrt{5}}\).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: