For an adiabatic process:
\[\Delta U = q + w, \quad q = 0 \implies \Delta U = w\]
Step 1: Using the first law of thermodynamics:
\[n C_V \Delta T = -P_{\text{ext}} (V_2 - V_1)\]
Since $V_2 = 2V_1$, substitute and simplify:
\[nR \frac{T_2}{P_2} = 2nR \frac{T_1}{P_1}.\]
Step 2: Relation between $P_2$ and $T_2$:
\[P_2 = \frac{5T_2}{2 \times 298}.\]
Step 3: Using $C_V$:
\[\frac{5}{2} nR (T_2 - T_1) = -nR T_1 \left( \frac{P_2}{P_1} - 1 \right).\]
Step 4: Substitute and solve:
\[T_2 = \frac{5T_2}{2 \times 298}.\]
From the equation:
\[T_2 \approx 274.16 \, \text{K}.\]
Nearest integer:
\[T_2 \approx 274 \, \text{K}.\]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: