For an adiabatic process:
\[\Delta U = q + w, \quad q = 0 \implies \Delta U = w\]
Step 1: Using the first law of thermodynamics:
\[n C_V \Delta T = -P_{\text{ext}} (V_2 - V_1)\]
Since $V_2 = 2V_1$, substitute and simplify:
\[nR \frac{T_2}{P_2} = 2nR \frac{T_1}{P_1}.\]
Step 2: Relation between $P_2$ and $T_2$:
\[P_2 = \frac{5T_2}{2 \times 298}.\]
Step 3: Using $C_V$:
\[\frac{5}{2} nR (T_2 - T_1) = -nR T_1 \left( \frac{P_2}{P_1} - 1 \right).\]
Step 4: Substitute and solve:
\[T_2 = \frac{5T_2}{2 \times 298}.\]
From the equation:
\[T_2 \approx 274.16 \, \text{K}.\]
Nearest integer:
\[T_2 \approx 274 \, \text{K}.\]
This problem involves calculating the final temperature of an ideal gas after it undergoes an irreversible adiabatic expansion against a constant external pressure.
The solution is based on the First Law of Thermodynamics and the properties of an ideal gas.
Step 1: List the given information.
Step 2: Apply the First Law of Thermodynamics for an adiabatic process.
Since \(q=0\), we have \(\Delta U = w\). Substituting the expressions for \(\Delta U\) and \(w\):
\[ n\overline{C_V}(T_2 - T_1) = -P_{ext}(V_2 - V_1) \]
Step 3: Substitute the given volume relationship \(V_2 = 2V_1\) into the equation.
\[ n\overline{C_V}(T_2 - T_1) = -P_{ext}(2V_1 - V_1) \] \[ n\overline{C_V}(T_2 - T_1) = -P_{ext}V_1 \]
Step 4: Use the Ideal Gas Law to express the initial volume \(V_1\) in terms of the initial conditions.
\[ P_1 V_1 = nRT_1 \implies V_1 = \frac{nRT_1}{P_1} \]
Substitute this expression for \(V_1\) into the equation from Step 3.
\[ n\overline{C_V}(T_2 - T_1) = -P_{ext}\left(\frac{nRT_1}{P_1}\right) \]
Step 5: Substitute the given value for \(\overline{C_V} = \frac{5}{2}R\) and simplify the equation. The terms \(n\) and \(R\) cancel out.
\[ n\left(\frac{5}{2}R\right)(T_2 - T_1) = -P_{ext}\left(\frac{nRT_1}{P_1}\right) \] \[ \frac{5}{2}(T_2 - T_1) = -\frac{P_{ext}}{P_1}T_1 \]
Step 6: Substitute the given numerical values into the simplified equation and solve for the final temperature \(T_2\).
\[ \frac{5}{2}(T_2 - 298) = -\frac{1 \, \text{atm}}{5 \, \text{atm}}(298 \, \text{K}) \] \[ \frac{5}{2}(T_2 - 298) = -\frac{298}{5} \] \[ T_2 - 298 = -\frac{298}{5} \times \frac{2}{5} \] \[ T_2 - 298 = -\frac{596}{25} \] \[ T_2 - 298 = -23.84 \] \[ T_2 = 298 - 23.84 = 274.16 \, \text{K} \]
The problem asks for the nearest integer value.
The final temperature is 274 K.
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.

The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)