For an adiabatic process:
\[\Delta U = q + w, \quad q = 0 \implies \Delta U = w\]
Step 1: Using the first law of thermodynamics:
\[n C_V \Delta T = -P_{\text{ext}} (V_2 - V_1)\]
Since $V_2 = 2V_1$, substitute and simplify:
\[nR \frac{T_2}{P_2} = 2nR \frac{T_1}{P_1}.\]
Step 2: Relation between $P_2$ and $T_2$:
\[P_2 = \frac{5T_2}{2 \times 298}.\]
Step 3: Using $C_V$:
\[\frac{5}{2} nR (T_2 - T_1) = -nR T_1 \left( \frac{P_2}{P_1} - 1 \right).\]
Step 4: Substitute and solve:
\[T_2 = \frac{5T_2}{2 \times 298}.\]
From the equation:
\[T_2 \approx 274.16 \, \text{K}.\]
Nearest integer:
\[T_2 \approx 274 \, \text{K}.\]
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: