Bv=B0 sin θ
B0=\(\frac{B_v}{sinθ}\)
The earth’s resultant magnetic field,
\(B_0=\frac{6×10^{−5}}{sin37^∘}\)
\(=\frac{6×10−5}{3}×5\)
=1×10–4 T
So, the correct option is (D): 1×10–4 T.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
In all cases, horizontal lines remain parallel to the x-axis. It never intersects the x-axis but only intersects the y-axis. The value of x can change, but y always tends to be constant for horizontal lines.
The equation for the vertical line is represented as x=a,
Here, ‘a’ is the point where this line intersects the x-axis.
x is the respective coordinates of any point lying on the line, this represents that the equation is not dependent on y.
⇒ Horizontal lines and vertical lines are perpendicular to each other.