Step 1: Write parametric form.
From
\[
\frac{x+3}{2}=\frac{2y-3}{5}=t
\]
we get
\[
x=2t-3,\quad y=\frac{5t+3}{2},\quad z=-1
\]
Step 2: Identify position vector and direction vector.
At \(t=0\): point on the line is
\[
(-3,\tfrac{3}{2},-1)
\]
Direction ratios are proportional to \((2,\tfrac{5}{2},0)\), i.e. \((4,5,0)\).
Step 3: Write the vector equation.
\[
\vec r=(-3\hat i+\tfrac{3}{2}\hat j-\hat k)+\lambda(4\hat i+5\hat j)
\]