If the image of a point \(P(3,2,1)\) in the line
\[
\frac{x-1}{1}=\frac{y}{2}=\frac{z-1}{1}
\]
is \(Q\), then the distance of \(Q\) from the line
\[
\frac{x-9}{3}=\frac{y-9}{2}=\frac{z-5}{-2}
\]
is:
Show Hint
For image of a point in a line:
first find the foot of the perpendicular, then reflect using \(Q=2M-P\).
Step 1: Image of a point in a line
The given line \(L_1\) passes through:
\[
A(1,0,1)
\]
with direction vector:
\[
\vec{d}_1=\langle 1,2,1\rangle
\]
Let \(M\) be the foot of the perpendicular from \(P(3,2,1)\) onto line \(L_1\).
Then the image point \(Q\) is given by:
\[
Q=2M-P
\]
Step 2: Find foot of perpendicular \(M\)
Vector form:
\[
\vec{AM}=\lambda \vec{d}_1
\Rightarrow M(1+\lambda,\,2\lambda,\,1+\lambda)
\]
Condition for perpendicularity:
\[
(\vec{PM})\cdot \vec{d}_1=0
\]
\[
(1+\lambda-3,\;2\lambda-2,\;1+\lambda-1)\cdot(1,2,1)=0
\]
\[
(\lambda-2)+2(2\lambda-2)+(\lambda)=0
\]
\[
6\lambda-6=0 \Rightarrow \lambda=1
\]
\[
\Rightarrow M(2,2,2)
\]
Step 3: Find image point \(Q\)
\[
Q=2M-P=2(2,2,2)-(3,2,1)=(1,2,3)
\]
Step 4: Distance of point \(Q\) from second line
Second line \(L_2\) passes through:
\[
B(9,9,5)
\]
with direction vector:
\[
\vec{d}_2=\langle 3,2,-2\rangle
\]
Vector:
\[
\vec{BQ}=(1-9,\;2-9,\;3-5)=(-8,-7,-2)
\]
Distance of a point from a line:
\[
\text{Distance}=\frac{|\vec{BQ}\times\vec{d}_2|}{|\vec{d}_2|}
\]
\[
\vec{BQ}\times\vec{d}_2=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}\\
-8 & -7 & -2\\
3 & 2 & -2
\end{vmatrix}
=18\hat{i}-22\hat{j}+5\hat{k}
\]
Magnitude:
\[
|\vec{BQ}\times\vec{d}_2|=\sqrt{18^2+22^2+5^2}=\sqrt{833}
\]
\[
|\vec{d}_2|=\sqrt{3^2+2^2+(-2)^2}=\sqrt{17}
\]
\[
\text{Distance}=\frac{\sqrt{833}}{\sqrt{17}}=\sqrt{49}=7
\]
\[
\boxed{7}
\]