Step 1: Use formula for shortest distance between skew lines.
\[
D=\frac{|(\vec r_2-\vec r_1)\cdot(\vec d_1\times\vec d_2)|}
{|\vec d_1\times\vec d_2|}
\]
Step 2: Write direction vectors.
\[
\vec d_1=(\alpha,-2,-2\alpha),\quad
\vec d_2=(\alpha,1,\alpha)
\]
Step 3: Compute cross product magnitude.
\[
|\vec d_1\times\vec d_2|
=\sqrt{9\alpha^4+9\alpha^2}
\]
Step 4: Use given distance $\sqrt2$.
\[
\sqrt2=\frac{| -3\alpha^2+9\alpha |}{\sqrt{9\alpha^4+9\alpha^2}}
\]
Squaring both sides and simplifying gives:
\[
(\alpha+7)(\alpha-1)=0
\]
Step 5: Find sum of solutions.
\[
\alpha=-7,\ 1
\Rightarrow \text{sum}=-6
\]
Final conclusion.
The required sum is $-6$.