Step 1: Compute relative lowering.
\[
\frac{\Delta P}{P^\circ} = \frac{0.005}{0.850} = 0.005882\ (\approx 5.882\times 10^{-3})
\]
Step 2: Apply Raoult's relation.
\[
0.005882 = \frac{\dfrac{0.50}{M}}{\dfrac{0.50}{M} + 0.50}
\]
Multiply numerator and denominator by \(M\):
\[
0.005882 = \frac{0.50}{0.50 + 0.50M}
\]
\[
0.005882(0.50 + 0.50M) = 0.50
\]
\[
0.002941 + 0.002941\,M = 0.50 $\Rightarrow$ 0.002941\,M = 0.497059
\]
\[
M = \frac{0.497059}{0.002941} \approx 169\ \text{g mol}^{-1}
\]
\[
\boxed{\text{Molar mass of the solid } \approx 1.69 \times 10^{2}\ \text{g mol}^{-1}}
\]
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: