Step 1: We apply integration by parts. Let:
- \( u = x \), so \( du = dx \)
- \( dv = e^{-x} dx \), so \( v = -e^{-x} \)
Step 2: Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Substitute the values: \[ \int x e^{-x} \, dx = -x e^{-x} - \int -e^{-x} \, dx \]
Step 3: Simplifying the remaining integral: \[ = -x e^{-x} + e^{-x} \]
Step 4: Factor the result: \[ = -(x + 1) e^{-x} \] Thus, the correct answer is (A) \( -(x + 1) e^{-x} \).
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $