We are given the integral:
\[ I = \int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}} \, dx \] We aim to solve it and express the result in the form: \[ I = Ax + B \ln |4e^{2x} - 5| + C \]
Step 1: Substitution
Let's make a substitution to simplify the integral. Define: \[ u = 4e^x - 5e^{-x} \] Now, differentiate \( u \) with respect to \( x \) to get \( du \): \[ \frac{du}{dx} = 4e^x + 5e^{-x} \] Hence: \[ du = (4e^x + 5e^{-x}) \, dx \] Now, substitute \( du \) and \( u \) into the integral: \[ I = \int \frac{3e^x + 5e^{-x}}{u} \, dx \]
Step 2: Simplifying the Numerator
Notice that the numerator \( 3e^x + 5e^{-x} \) can be written as: \[ 3e^x + 5e^{-x} = \frac{3}{4}(4e^x + 5e^{-x}) \] Thus, the integral becomes: \[ I = \frac{3}{4} \int \frac{4e^x + 5e^{-x}}{u} \, dx \] From the earlier differentiation, we know that \( 4e^x + 5e^{-x} = du \), so the integral simplifies to: \[ I = \frac{3}{4} \int \frac{du}{u} \]
Step 3: Integration
The integral of \( \frac{1}{u} \) is \( \ln |u| \), so: \[ I = \frac{3}{4} \ln |u| + C \]
Step 4: Substituting \( u \) Back
Now, substitute back \( u = 4e^x - 5e^{-x} \) to get: \[ I = \frac{3}{4} \ln |4e^x - 5e^{-x}| + C \] Next, express the result in the desired form by separating the \( x \)-term: \[ I = Ax + B \ln |4e^{2x} - 5| + C \] By comparing both expressions, we find that: \[ A = -1, \quad B = -\frac{7}{8} \]
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \]If
\[ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2 \end{bmatrix}, \]
then find the value of \( (AB)^{-1} \).
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $