We are given the integral:
\[ I = \int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}} \, dx \] We aim to solve it and express the result in the form: \[ I = Ax + B \ln |4e^{2x} - 5| + C \]
Step 1: Substitution
Let's make a substitution to simplify the integral. Define: \[ u = 4e^x - 5e^{-x} \] Now, differentiate \( u \) with respect to \( x \) to get \( du \): \[ \frac{du}{dx} = 4e^x + 5e^{-x} \] Hence: \[ du = (4e^x + 5e^{-x}) \, dx \] Now, substitute \( du \) and \( u \) into the integral: \[ I = \int \frac{3e^x + 5e^{-x}}{u} \, dx \]
Step 2: Simplifying the Numerator
Notice that the numerator \( 3e^x + 5e^{-x} \) can be written as: \[ 3e^x + 5e^{-x} = \frac{3}{4}(4e^x + 5e^{-x}) \] Thus, the integral becomes: \[ I = \frac{3}{4} \int \frac{4e^x + 5e^{-x}}{u} \, dx \] From the earlier differentiation, we know that \( 4e^x + 5e^{-x} = du \), so the integral simplifies to: \[ I = \frac{3}{4} \int \frac{du}{u} \]
Step 3: Integration
The integral of \( \frac{1}{u} \) is \( \ln |u| \), so: \[ I = \frac{3}{4} \ln |u| + C \]
Step 4: Substituting \( u \) Back
Now, substitute back \( u = 4e^x - 5e^{-x} \) to get: \[ I = \frac{3}{4} \ln |4e^x - 5e^{-x}| + C \] Next, express the result in the desired form by separating the \( x \)-term: \[ I = Ax + B \ln |4e^{2x} - 5| + C \] By comparing both expressions, we find that: \[ A = -1, \quad B = -\frac{7}{8} \]
At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.