We are given the integral
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{[x]+4}\,dx
\]
where $[x]$ denotes the greatest integer less than or equal to $x$.
Step 1: Determine the values of $[x]$ in the interval.
Since
\[
-\frac{\pi}{2}\approx -1.57 \quad \text{and} \quad \frac{\pi}{2}\approx 1.57,
\]
the interval $[-\frac{\pi}{2},\frac{\pi}{2}]$ can be divided as:
\[
[-\tfrac{\pi}{2},-1),\ [-1,0),\ [0,1),\ [1,\tfrac{\pi}{2}]
\]
Step 2: Evaluate the integral piecewise.
\[
\int_{-\frac{\pi}{2}}^{-1} \frac{1}{3}\,dx
+ \int_{-1}^{0} \frac{1}{4}\,dx
+ \int_{0}^{1} \frac{1}{5}\,dx
+ \int_{1}^{\frac{\pi}{2}} \frac{1}{6}\,dx
\]
Step 3: Compute each integral.
\[
\int_{-\frac{\pi}{2}}^{-1} \frac{1}{3}\,dx
= \frac{1}{3}\left(-1+\frac{\pi}{2}\right)
\]
\[
\int_{-1}^{0} \frac{1}{4}\,dx
= \frac{1}{4}
\]
\[
\int_{0}^{1} \frac{1}{5}\,dx
= \frac{1}{5}
\]
\[
\int_{1}^{\frac{\pi}{2}} \frac{1}{6}\,dx
= \frac{1}{6}\left(\frac{\pi}{2}-1\right)
\]
Step 4: Add all the results.
\[
\frac{1}{3}\left(\frac{\pi}{2}-1\right)
+ \frac{1}{4}
+ \frac{1}{5}
+ \frac{1}{6}\left(\frac{\pi}{2}-1\right)
\]
\[
=\left(\frac{\pi}{2}-1\right)\left(\frac{1}{3}+\frac{1}{6}\right)
+\frac{1}{4}+\frac{1}{5}
\]
\[
=\frac{\pi-2}{4}+\frac{9}{20}
\]
\[
=\frac{15\pi-5}{20}
=\frac{7}{60}(3\pi-1)
\]
Final Answer: $\boxed{\dfrac{7}{60}(3\pi-1)}$