The region is bounded by the curves
\[
y = 1 + x^2 \quad \text{and} \quad y = 3 - x.
\]
Step 1: Find the limits of integration.
The curves intersect when
\[
1 + x^2 = 3 - x
\]
\[
x^2 + x - 2 = 0
\]
\[
(x+2)(x-1)=0 \Rightarrow x=-2,\;1
\]
Thus, the region extends from \( x=-2 \) to \( x=1 \).
Step 2: Compute the area to the left of the line \( x=-1 \).
\[
A_1 = \int_{-2}^{-1} \big[(3-x)-(1+x^2)\big]\,dx
= \int_{-2}^{-1} (2 - x - x^2)\,dx
\]
\[
A_1 = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{-1}
= \frac{13}{6}
\]
Step 3: Compute the area to the right of the line \( x=-1 \).
\[
A_2 = \int_{-1}^{1} (2 - x - x^2)\,dx
\]
\[
A_2 = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-1}^{1}
= \frac{13}{6}
\]
Step 4: Find the ratio and required sum.
\[
A_1 : A_2 = \frac{13}{6} : \frac{13}{6} = 13 : 13
\]
Reducing the ratio to coprime integers,
\[
m:n = 13:13
\Rightarrow m+n = 26
\]
Final Answer:
\[
\boxed{26}
\]