Given:
\[ f(x)=\sin^{-1}\!\left(\frac{5-x}{3+2x}\right)+\frac{1}{\ln(10-x)} \]
Step 1: Domain of \[ \sin^{-1}\!\left(\frac{5-x}{3+2x}\right) \] For sine inverse to be defined: \[ -1 \le \frac{5-x}{3+2x} \le 1 \] Solving:
\[ \frac{5-x}{3+2x} \le 1 \Rightarrow x \ge \frac{2}{3} \] \[ \frac{5-x}{3+2x} \ge -1 \Rightarrow x \le -8 \] Hence, \[ x \in (-\infty,-8] \cup \left[\frac{2}{3},\infty\right) \]
Step 2: Domain of \[ \frac{1}{\ln(10-x)} \] Conditions:
1. Argument of log must be positive: \[ 10-x>0 \Rightarrow x<10 \] 2. Denominator cannot be zero: \[ \ln(10-x)\neq 0 \Rightarrow 10-x\neq 1 \Rightarrow x\neq 9 \] So, \[ x<10,\quad x\neq 9 \]
Step 3: Combined domain Intersection of both conditions: \[ (-\infty,-8] \cup \left[\frac{2}{3},10\right) - \{9\} \] Comparing with: \[ (-\infty,\alpha] \cup [\beta,\gamma) - \{\delta\} \] We get: \[ \alpha=-8,\quad \beta=\frac{2}{3},\quad \gamma=10,\quad \delta=9 \]
Step 4: Required value \[ 6(\alpha+\beta+\gamma+\delta) =6\left(-8+\frac{2}{3}+10+9\right) \] \[ =6\left(\frac{35}{3}\right)=70 \]
Final Answer: \[ \boxed{70} \].
| List - I | List - II | ||
| (P) | If a = 0, b = 1, c = 0 and d = 0, then | (1) | h is one-one. |
| (Q) | If a = 1, b = 0, c = 0 and d = 0, then | (2) | h is onto. |
| (R) | If a = 0, b = 0, c = 1 and d = 0, then | (3) | h is differentiable on \(\R\) |
| (S) | If a = 0, b = 0, c = 0 and d = 1, then | (4) | the range of h is [0, 1]. |
| (5) | the range of h is {0, 1}. | ||
Let \( f(x) = \sqrt{4 - x^2} \), \( g(x) = \sqrt{x^2 - 1} \). Then the domain of the function \( h(x) = f(x) + g(x) \) is equal to:

Match List-I with List-II. 
For the thermal decomposition of reactant AB(g), the following plot is constructed. 
The half life of the reaction is 'x' min.
x =_______} min. (Nearest integer)}