Concept:
The region is bounded by the curves \( y=1 \), \( y=x^2 \), and \( y=\dfrac{8}{x} \).
The upper boundary changes where \( x^2=\dfrac{8}{x} \).
Step 1: Find the point of intersection
\[
x^2=\frac{8}{x}\Rightarrow x^3=8 \Rightarrow x=2
\]
Step 2: Set up the integrals
For \( 1\le x\le 2 \), upper curve is \( y=x^2 \)
For \( 2\le x\le 8 \), upper curve is \( y=\dfrac{8}{x} \)
\[
\text{Area}=\int_1^2 (x^2-1)\,dx+\int_2^8\left(\frac{8}{x}-1\right)\,dx
\]
Step 3: Evaluate the integrals
\[
\int_1^2(x^2-1)\,dx=\left[\frac{x^3}{3}-x\right]_1^2=\frac{4}{3}
\]
\[
\int_2^8\left(\frac{8}{x}-1\right)\,dx
=\left[8\ln x-x\right]_2^8
=16\ln 2-6
\]
Step 4: Add the results
\[
\text{Area}=16\ln 2-\frac{14}{3}
=\frac{2}{3}(24\ln 2-7)
\]