The value of the determinant \[ \begin{vmatrix} 2 & 3 & 5 \\ 1 & 0 & 4 \\ 7 & 2 & 1 \end{vmatrix} \] is:
Let the determinant be \(\Delta\): \[ \Delta = \begin{vmatrix} 2 & 3 & 5 \\ 1 & 0 & 4 \\ 7 & 2 & 1 \end{vmatrix} \] We expand along the first row (Row 1): \[ \Delta = 2 \cdot \begin{vmatrix} 0 & 4 \\ 2 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 4 \\ 7 & 1 \end{vmatrix} + 5 \cdot \begin{vmatrix} 1 & 0 \\ 7 & 2 \end{vmatrix} \] Calculate each minor: \[ \begin{vmatrix} 0 & 4 \\ 2 & 1 \end{vmatrix} = (0)(1) - (4)(2) = 0 - 8 = -8 \] \[ \begin{vmatrix} 1 & 4 \\ 7 & 1 \end{vmatrix} = (1)(1) - (4)(7) = 1 - 28 = -27 \] \[ \begin{vmatrix} 1 & 0 \\ 7 & 2 \end{vmatrix} = (1)(2) - (0)(7) = 2 - 0 = 2 \] Substitute back: \[ \Delta = 2 \times (-8) - 3 \times (-27) + 5 \times 2 = -16 + 81 + 10 = 75 \] Note: The calculated determinant is \(\boxed{75}\), which does not match any of the given options (69, -69, 87, -87). Rechecking with expansion along the second row confirms the same result: \[ \Delta = -1 \cdot \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} + 0 - 4 \cdot \begin{vmatrix} 2 & 3 \\ 7 & 2 \end{vmatrix} \] Calculate minors: \[ \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} = 3 \times 1 - 5 \times 2 = 3 - 10 = -7 \] \[ \begin{vmatrix} 2 & 3 \\ 7 & 2 \end{vmatrix} = 2 \times 2 - 3 \times 7 = 4 - 21 = -17 \] Then, \[ \Delta = -1 \times (-7) - 4 \times (-17) = 7 + 68 = 75 \] Therefore, the determinant is \(\boxed{75}\). If the answer key states (c) 87, there may be a typographical error in the matrix or options. \[ \boxed{75 \text{ (calculated determinant)}} \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
Match the following pollutants with their corresponding control methods.
Pollutants Control
A) Particulate matter I) Catalytic converter
B) Carbon monoxide II) Scrubber
C) Sulphur dioxide III) Incinerators
D) Hospital wastes IV) Electrostatic precipitator