Step 1: Recall the relationship between the dot product and cross product.
We know that:
\[
|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \text{and} \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta
\]
Step 2: Use the given values.
From the problem, we have:
\[
|\vec{a}| = 5, \; |\vec{b}| = 13, \; |\vec{a} \times \vec{b}| = 25
\]
\[
25 = 5 \times 13 \times \sin \theta $\Rightarrow$ \sin \theta = \frac{25}{65} = \frac{5}{13}
\]
Step 3: Find \(\cos \theta\).
Since \(\sin^2 \theta + \cos^2 \theta = 1\), we find:
\[
\cos^2 \theta = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169}
\]
\[
\cos \theta = \frac{12}{13}
\]
Step 4: Calculate the dot product.
\[
\vec{a} \cdot \vec{b} = 5 \times 13 \times \frac{12}{13} = 60
\]
Step 5: Conclude.
The value of \(|\vec{a} \cdot \vec{b}|\) is 60.
Final Answer: \[ \boxed{60} \]