This integral represents the area under the curve of a semicircle of radius \(a\).
Using the formula:
\[
\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C.
\]
Evaluate from 0 to \(a\):
\[
\int_0^a \sqrt{a^2 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a.
\]
At \(x = a\),
\[
\frac{a}{2} \times 0 + \frac{a^2}{2} \times \frac{\pi}{2} = \frac{a^2 \pi}{4}.
\]
At \(x = 0\),
\[
0 + \frac{a^2}{2} \times 0 = 0.
\]
Therefore,
\[
\boxed{
\int_0^a \sqrt{a^2 - x^2} \, dx = \frac{a^2 \pi}{4}.
}
\]