Use integration by parts:
\[
\int u \, dv = uv - \int v \, du,
\]
where
\[
u = x \implies du = dx, \quad dv = \cos x \, dx \implies v = \sin x.
\]
Then,
\[
\int_0^{\pi/2} x \cos x \, dx = \left. x \sin x \right|_0^{\pi/2} - \int_0^{\pi/2} \sin x \, dx.
\]
Calculate each term:
\[
\left. x \sin x \right|_0^{\pi/2} = \frac{\pi}{2} \times 1 - 0 = \frac{\pi}{2},
\]
and
\[
\int_0^{\pi/2} \sin x \, dx = \left. -\cos x \right|_0^{\pi/2} = (-\cos \frac{\pi}{2}) - (-\cos 0) = 0 + 1 = 1.
\]
Therefore,
\[
\int_0^{\pi/2} x \cos x \, dx = \frac{\pi}{2} - 1.
\]
Final answer:
\[
\boxed{
\frac{\pi}{2} - 1.
}
\]