We are asked to find the value of:
\[
\sin^{-1} \left[ \cos \left( \frac{39\pi}{5} \right) \right]
\]
Step 1: Simplify the angle \( \frac{39\pi}{5} \)
First, simplify the angle \( \frac{39\pi}{5} \). We know that the cosine function has a period of \( 2\pi \), so we can subtract multiples of \( 2\pi \) to bring the angle within a more manageable range:
\[
\frac{39\pi}{5} = 2\pi \times 3 + \frac{3\pi}{5}
\]
Thus, we have:
\[
\cos \left( \frac{39\pi}{5} \right) = \cos \left( \frac{3\pi}{5} \right)
\]
Step 2: Evaluate the inverse sine function
Now, we need to find:
\[
\sin^{-1} \left( \cos \left( \frac{3\pi}{5} \right) \right)
\]
We know that \( \cos \left( \frac{3\pi}{5} \right) \) is positive and lies within the range of the inverse sine function, so we can directly apply the result:
\[
\sin^{-1} \left( \cos \left( \frac{3\pi}{5} \right) \right) = \frac{3\pi}{10}
\]
Thus, the correct answer is \( \boxed{\frac{3\pi}{10}} \).