We are asked to find:
\[
\tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3})
\]
We know that:
\[
\tan^{-1} (\sqrt{3}) = \frac{\pi}{3}
\]
Now, for \( \cot^{-1} (-\sqrt{3}) \), recall that:
\[
\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]
So,
\[
\cot^{-1} (-\sqrt{3}) = \frac{\pi}{2} - \tan^{-1} (-\sqrt{3}) = \frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6}
\]
Now, subtracting the two terms:
\[
\tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) = \frac{\pi}{3} - \frac{5\pi}{6} = -\frac{\pi}{2}
\]
Thus, the correct answer is \( -\frac{\pi}{2} \).