Question:

Find \( \tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) \).

Show Hint

When dealing with inverse trigonometric functions of negative values, use the formula \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \) to simplify the expression.
  • 0
  • \( -\frac{\pi}{2} \)
  • \( \pi \)
  • \( \frac{\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are asked to find: \[ \tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) \] We know that: \[ \tan^{-1} (\sqrt{3}) = \frac{\pi}{3} \] Now, for \( \cot^{-1} (-\sqrt{3}) \), recall that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] So, \[ \cot^{-1} (-\sqrt{3}) = \frac{\pi}{2} - \tan^{-1} (-\sqrt{3}) = \frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6} \] Now, subtracting the two terms: \[ \tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) = \frac{\pi}{3} - \frac{5\pi}{6} = -\frac{\pi}{2} \] Thus, the correct answer is \( -\frac{\pi}{2} \).
Was this answer helpful?
0
0