The value of
\(\lim_{{n \to \infty}} 6\tan\left\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{1}{{r^2+3r+3}}\right)\right\}\)
is equal to :
1
2
3
6
The correct answer is (C) : 3
\(=\lim_{{n \to \infty}} 6\tan\left\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{1}{{r^2+3r+3}}\right)\right\}\)
\(=\lim_{{n \to \infty}} 6\tan\left\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{{(r+2) - (r+1)}}{{1 + (r+2)(r+1)}}\right)\right\}\)
\(=\lim_{{n \to \infty}} 6\tan\left\{\sum_{{r=1}}^{n} (\tan^{-1}(r+2) - \tan^{-1}(r+1))\right\}\)
\(\lim_{{n \to \infty}} 6\tan\left(\tan^{-1}(n+2) - \tan^{-1}(2)\right)\)
\(=6\tan\left\{\frac{\pi}{2} - \cot^{-1}\left(\frac{1}{2}\right)\right\}\)
\(=6\tan\left(\tan^{-1}\left(\frac{1}{2}\right)\right) = 3\)
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]

The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
Considering the domain and range of the inverse functions, following formulas are important to be noted:
Also, the following formulas are defined for inverse trigonometric functions.
cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0