We are given that the interior angles are in arithmetic progression (A.P.)
with a common difference of 6° and the largest angle is 219°. The sum of the interior angles of an \( n \)-sided polygon is given by: \[ \frac{n}{2} \left( 2a + (n-1) \times 6 \right) = (n-2) \times 180 \] where \( a \) is the first angle. Simplifying: \[ an + 3n^2 - 3n = (n-2) \times 180 \] Now, using the condition that the largest interior angle is 219°, we have: \[ a + (n-1) \times 6 = 219 \] which simplifies to: \[ a = 225 - 6n \] Substitute this value of \( a \) into the sum equation: \[ (225 - 6n) + 3n^2 - 3n = (n-2) \times 180 \] Solving the resulting quadratic equation gives \( n = 20 \).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: