Given that the midpoint of the chord is \( \left( \sqrt{2}, \frac{4}{3} \right) \), and the length of the chord is \( \frac{2\sqrt{\alpha}}{3} \).
The equation of the chord is derived using the midpoint formula, and we compute the length of the chord: \[ \sqrt{2x + 3y} = 6 \Rightarrow y = \frac{6 - \sqrt{2x}}{3} \quad {(put in ellipse form)} \] \[ {So, } \frac{x^2}{9} + \left( \frac{6 - \sqrt{2x}}{9 \times 4} \right)^2 = 1 \] \[ 4x^2 + 36 + 2x^2 - 12 \sqrt{2x} = 36 \] \[ 6x^2 - 12 \sqrt{2x} = 0 \] \[ 6x(x - \sqrt{2}) = 0 \] \[ x = 0 \quad {or} \quad x = \sqrt{2} \] So, \( y = 2 \) or \( y = \frac{2}{3} \) \[ {Length of chord} = \sqrt{\left( 2\sqrt{2} - 0 \right)^2 + \left( \frac{2}{3} - 2 \right)^2} \] \[ = \sqrt{8 + \frac{16}{9}} = \sqrt{\frac{88}{9}} = \frac{2}{3} \sqrt{22} \] \[ \Rightarrow \alpha = 22 \] Thus, \( \alpha = 22 \).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: