\[ \lim_{x \to 0} 2 \cdot \frac{\left( 1 - \frac{x^2}{2!} \right) \left( 1 - \frac{4x^2}{2!} \right) \left( 1 - \frac{9x^2}{2!} \right) \cdots \left( 1 - \frac{100x^2}{2!} \right)}{x^2} \]
By expansion:
\[ \lim_{x \to 0} 2 \cdot \frac{\left[ 1 - \frac{x^2}{2} \right] \left[ 1 - \frac{2x^2}{2} \right] \left[ 1 - \frac{3x^2}{2} \right] \cdots \left[ 1 - \frac{10x^2}{2} \right]}{x^2}. \]
Simplify the product:
\[ \lim_{x \to 0} 2 \cdot \frac{1 - \left[ \frac{x^2}{2} + \frac{2x^2}{2} + \frac{3x^2}{2} + \cdots + \frac{10x^2}{2} \right]}{x^2}. \]
The \(x^2\) terms cancel:
\[ 2 \cdot \left( \frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \cdots + \frac{10}{2} \right). \]
Simplify the summation:
\[ 2 \cdot \frac{1 + 2 + 3 + \cdots + 10}{2}. \]
The sum of the first 10 natural numbers is:
\[ \frac{10 \cdot 11}{2} = 55. \]
Final Answer: 55.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.