Step 1: Recall the standard integral.
\[
\int \frac{dx}{1+x^{2}} = \tan^{-1}x + C
\]
Step 2: Apply limits.
\[
\int_{1}^{\sqrt{3}} \frac{dx}{1+x^{2}} = \left[ \tan^{-1}x \right]_{1}^{\sqrt{3}}
\]
\[
= \tan^{-1}(\sqrt{3}) - \tan^{-1}(1)
\]
Step 3: Simplify.
\[
\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}, \tan^{-1}(1) = \frac{\pi}{4}
\]
\[
\therefore \int_{1}^{\sqrt{3}} \frac{dx}{1+x^{2}} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12}
\]
Step 4: Conclusion.
The correct answer is (B) $\dfrac{\pi}{12}$.