Given equation:
\(\sin \left(\theta + \frac{\pi}{6} \right) = \cos \theta\)
Using the identity:
\(\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)\), we rewrite the equation as:
\(\sin \left(\theta + \frac{\pi}{6} \right) = \sin \left(\frac{\pi}{2} - \theta\right)\)
For \(\sin A = \sin B\), the general solution is:
\(A = B + 2k\pi\) or \(A = \pi - B + 2k\pi\) for some integer \(k\).
Applying this to our equation:
\(\theta + \frac{\pi}{6} = \frac{\pi}{2} - \theta\)
Solving for \(\theta\):
\(\theta + \theta = \frac{\pi}{2} - \frac{\pi}{6}\)
\(2\theta = \frac{\pi}{3}\)
\(\theta = \frac{\pi}{6}\)
Since \(\theta\) lies in the given range \(0 \leq \theta \leq \frac{\pi}{2}\), the valid solution is:
\(\theta = \frac{\pi}{6}\)
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: