\(\lim_{{x \to 0}} \limits\) \(\frac{cos(sin x) - cos x }{x^4}\) is equal to :
Assume a is any number in the general domain of the corresponding trigonometric function, then we can explain the following limits.
We know that the graphs of the functions y = sin x and y = cos x detain distinct values between -1 and 1 as represented in the above figure. Thus, the function is swinging between the values, so it will be impossible for us to obtain the limit of y = sin x and y = cos x as x tends to ±∞. Hence, the limits of all six trigonometric functions when x tends to ±∞ are tabulated below: