Question:

The value of $\dfrac{1 + \tanh x}{1 - \tanh x} =$ ?

Show Hint

Use $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ to simplify complex hyperbolic expressions.
Updated On: May 18, 2025
  • $e^x$
  • $e^{-2x}$
  • $e^{2x}$
  • $e^{-x}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Use the identity: \[ \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \Rightarrow \frac{1 + \tanh x}{1 - \tanh x} = \frac{e^{2x} + 1 + e^{2x} - 1}{e^{2x} + 1 - (e^{2x} - 1)} = \frac{2e^{2x}}{2} = e^{2x} \]
Was this answer helpful?
0
0