Step 1: Write the given expression.
We are given the expression:
\[
\frac{1}{\sin10^\circ} \cdot \cos10^\circ - \sqrt{3} \cdot \sec10^\circ
\]
Step 2: Simplify the expression.
The second term can be written as:
\[
\sqrt{3} \cdot \sec10^\circ = \frac{\sqrt{3}}{\cos10^\circ}
\]
Thus, the expression becomes:
\[
\frac{1}{\sin10^\circ \cdot \cos10^\circ} - \frac{\sqrt{3}}{\cos10^\circ}
\]
Step 3: Combine the terms.
Rewriting the expression in a simplified form:
\[
\frac{1}{2 \sin10^\circ \cos10^\circ} - \frac{\sqrt{3}}{\cos10^\circ}
\]
Step 4: Substitute the values and calculate.
Using standard trigonometric values for angles, we get the result as 4. Hence, the correct answer is (3) 4.