Step 1: Use the identity for inverse trigonometric functions.
We are given the expression \( (\sin^{-1} x)^2 + (\cos^{-1} x)^2 \), and we need to minimize it in the given interval for \( x \).
We use the identity:
\[
\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}
\]
which holds for all \( x \in [0, 1] \). This means that:
\[
(\sin^{-1} x)^2 + (\cos^{-1} x)^2 = \left( \frac{\pi}{2} - \sin^{-1} x \right)^2 + (\sin^{-1} x)^2
\]
Step 2: Simplify the expression.
Expanding the terms:
\[
= \left( \frac{\pi}{2} \right)^2 - 2 \times \frac{\pi}{2} \times \sin^{-1} x + (\sin^{-1} x)^2 + (\sin^{-1} x)^2
\]
\[
= \frac{\pi^2}{4} - \pi \sin^{-1} x + 2 (\sin^{-1} x)^2
\]
Now, to minimize this expression, we need to consider the values of \( x \) in the given interval.
Step 3: Calculate the value at the boundary.
We are given the interval \( x \in \left[ \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}} \right] \).
- For \( x = \frac{\sqrt{3}}{2} \), we calculate \( \sin^{-1} x = \frac{\pi}{3} \).
- For \( x = \frac{1}{\sqrt{2}} \), we calculate \( \sin^{-1} x = \frac{\pi}{4} \).
Thus, the minimum value of the expression occurs when \( x = \frac{1}{\sqrt{2}} \), yielding the value of the expression as:
\[
(\sin^{-1} x)^2 + (\cos^{-1} x)^2 = \frac{a \pi^2}{b} = \frac{9 \pi^2}{4}
\]
Therefore, the minimum value of \( a + b \) is 9.