Question:

The system of linear equations
$x + y + z = 6$
$2x + 5y + az = 36$
$x + 2y + 3z = b$
has

Show Hint

For a system $AX=B$, infinite solutions exist if $|A|=0$ and $(\text{adj } A)B = 0$. In matrix form, the last row of the row-reduced augmented matrix must be all zeros.
Updated On: Feb 5, 2026
  • infinitely many solutions for $a=8$ and $b=14$
  • infinitely many solutions for $a=8$ and $b=16$
  • unique solution for $a=8$ and $b=16$
  • unique solution for $a=8$ and $b=14$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To analyze the system, we form the augmented matrix:
$\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 2 & 5 & a & 36 \\ 1 & 2 & 3 & b \end{array} \right)$
Apply row operations $R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - R_1$:
$\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 3 & a-2 & 24 \\ 0 & 1 & 2 & b-6 \end{array} \right)$
Swap $R_2$ and $R_3$ to simplify elimination:
$\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & b-6 \\ 0 & 3 & a-2 & 24 \end{array} \right)$
Apply $R_3 \to R_3 - 3R_2$:
$\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & b-6 \\ 0 & 0 & a-2 - 6 & 24 - 3(b-6) \end{array} \right)$
Simplifying the last row gives:
$\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & b-6 \\ 0 & 0 & a-8 & 42 - 3b \end{array} \right)$
For infinitely many solutions, the rank of the coefficient matrix must equal the rank of the augmented matrix, and both must be less than the number of variables (3).
This requires the entire last row to be zero.
$a - 8 = 0 \implies a = 8$.
$42 - 3b = 0 \implies 3b = 42 \implies b = 14$.
Was this answer helpful?
0
0

Top Questions on Matrices and Determinants

View More Questions