
To solve the problem, we need to evaluate the trigonometric expression:
$ \cos 60^\circ \cos 30^\circ - \sin 60^\circ \sin 30^\circ $
1. Recognizing the Identity:
This expression matches the cosine angle addition identity:
$ \cos(A + B) = \cos A \cos B - \sin A \sin B $
So,
$ \cos 60^\circ \cos 30^\circ - \sin 60^\circ \sin 30^\circ = \cos(60^\circ + 30^\circ) = \cos(90^\circ) $
2. Using Trigonometric Values:
$ \cos(90^\circ) = 0 $
Final Answer:
The value of the expression is $ 0 $.
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.