To solve the problem, we need to evaluate the trigonometric expression:
$ \cos 60^\circ \cos 30^\circ - \sin 60^\circ \sin 30^\circ $
1. Recognizing the Identity:
This expression matches the cosine angle addition identity:
$ \cos(A + B) = \cos A \cos B - \sin A \sin B $
So,
$ \cos 60^\circ \cos 30^\circ - \sin 60^\circ \sin 30^\circ = \cos(60^\circ + 30^\circ) = \cos(90^\circ) $
2. Using Trigonometric Values:
$ \cos(90^\circ) = 0 $
Final Answer:
The value of the expression is $ 0 $.
The given graph illustrates: