To solve the problem, we need to evaluate the value of the expression:
$ \tan 26^\circ \cdot \tan 64^\circ $
1. Understanding the Identity:
We know that:
$ \tan \theta \cdot \tan (90^\circ - \theta) = 1 $
2. Applying the Identity:
Here, $64^\circ = 90^\circ - 26^\circ$, so we use the identity:
$ \tan 26^\circ \cdot \tan 64^\circ = \tan 26^\circ \cdot \tan (90^\circ - 26^\circ) = 1 $
Final Answer:
The value of $ \tan 26^\circ \cdot \tan 64^\circ $ is $ 1 $.
The given graph illustrates: