Question:

The value of \(\tan 26^\circ.  \tan 64^\circ\) is 

Updated On: Apr 17, 2025
  • -1
  • 1
  • 2
  • -2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To solve the problem, we need to evaluate the value of the expression:
$ \tan 26^\circ \cdot \tan 64^\circ $

1. Understanding the Identity:
We know that:
$ \tan \theta \cdot \tan (90^\circ - \theta) = 1 $

2. Applying the Identity:
Here, $64^\circ = 90^\circ - 26^\circ$, so we use the identity:

$ \tan 26^\circ \cdot \tan 64^\circ = \tan 26^\circ \cdot \tan (90^\circ - 26^\circ) = 1 $

Final Answer:
The value of $ \tan 26^\circ \cdot \tan 64^\circ $ is $ 1 $.

Was this answer helpful?
6
2