
To solve the problem, we need to evaluate the value of the expression:
$ \tan 26^\circ \cdot \tan 64^\circ $
1. Understanding the Identity:
We know that:
$ \tan \theta \cdot \tan (90^\circ - \theta) = 1 $
2. Applying the Identity:
Here, $64^\circ = 90^\circ - 26^\circ$, so we use the identity:
$ \tan 26^\circ \cdot \tan 64^\circ = \tan 26^\circ \cdot \tan (90^\circ - 26^\circ) = 1 $
Final Answer:
The value of $ \tan 26^\circ \cdot \tan 64^\circ $ is $ 1 $.
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.