The total surface area of a cone, whose radius is \(\frac{r}{2}\) and slant height is \(2l\), will be :
Show Hint
1. Write down the general formula for the total surface area of a cone: TSA = \(\pi \times (\text{actual radius}) \times (\text{actual radius} + \text{actual slant height})\).
2. Identify the given actual radius and actual slant height from the problem:
Actual radius = \(r/2\)
Actual slant height = \(2l\)
3. Substitute these into the formula: TSA = \(\pi \left(\frac{r}{2}\right) \left(\frac{r}{2} + 2l\right)\).
4. Simplify the expression: \(\pi \frac{r}{2} (2l + \frac{r}{2}) = \pi rl + \frac{\pi r^2}{4} = \pi r(l + \frac{r}{4})\).
Concept: The total surface area (TSA) of a cone is the sum of the area of its circular base and its curved surface area (CSA).
The formulas are:
Area of base = \(\pi \times (\text{radius})^2\)
Curved Surface Area (CSA) = \(\pi \times \text{radius} \times \text{slant height}\)
Total Surface Area (TSA) = \(\pi \times \text{radius}^2 + \pi \times \text{radius} \times \text{slant height}\)
TSA = \(\pi \times \text{radius} \times (\text{radius} + \text{slant height})\)
Step 1: Identify the given dimensions of the cone
Let the actual radius of the cone be \(R_{cone}\) and its actual slant height be \(L_{cone}\).
Given:
Radius of the cone, \(R_{cone} = \frac{r}{2}\)
Slant height of the cone, \(L_{cone} = 2l\)
Here, \(r\) and \(l\) are general variables used in the problem statement and options.
Step 2: Substitute these dimensions into the TSA formula
The general formula for TSA of a cone is TSA = \(\pi R_{cone} (R_{cone} + L_{cone})\).
Substitute \(R_{cone} = \frac{r}{2}\) and \(L_{cone} = 2l\):
\[ \text{TSA} = \pi \left(\frac{r}{2}\right) \left( \frac{r}{2} + 2l \right) \]
Step 3: Simplify the expression
First, rearrange the terms inside the second parenthesis to match common order:
\[ \text{TSA} = \pi \frac{r}{2} \left( 2l + \frac{r}{2} \right) \]
Now, distribute the \(\pi \frac{r}{2}\) term:
\[ \text{TSA} = \left(\pi \frac{r}{2} \times 2l\right) + \left(\pi \frac{r}{2} \times \frac{r}{2}\right) \]
\[ \text{TSA} = \pi r l + \pi \frac{r^2}{4} \]
Factor out \(\pi r\) from both terms:
\[ \text{TSA} = \pi r \left( l + \frac{r}{4} \right) \]
Step 4: Compare with the given options
The simplified expression is \(\pi r(l + \frac{r}{4})\).
This matches option (2).