Step 1: Understanding the Concept:
We need to apply the standard formulas for the curved surface area, total surface area, and volume of a frustum of a cone. The first step is to calculate the slant height.
Step 2: Key Formula or Approach:
Let \(r_1\) be the radius of the larger base, \(r_2\) be the radius of the smaller base, \(h\) be the height, and \(l\) be the slant height.
\[\begin{array}{rl} \bullet & \text{Slant height: \(l = \sqrt{h^2 + (r_1 - r_2)^2}\)} \\ \bullet & \text{(i) Curved Surface Area (CSA): \(A_C = \pi (r_1 + r_2) l\)} \\ \bullet & \text{(ii) Total Surface Area (TSA): \(A_T = \pi (r_1 + r_2) l + \pi r_1^2 + \pi r_2^2\)} \\ \bullet & \text{(iii) Volume (V): \(V = \frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2)\)} \\ \end{array}\]
Step 3: Detailed Explanation:
Given values:
\[ r_1 = 14 \text{ cm, } r_2 = 8 \text{ cm, } h = 8 \text{ cm, } \pi = 3.14 \]
First, calculate the slant height \(l\):
\[ l = \sqrt{8^2 + (14 - 8)^2} = \sqrt{64 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \text{ cm} \]
(i) Curved surface area of frustum:
\[ A_C = \pi (r_1 + r_2) l = 3.14 \times (14 + 8) \times 10 \]
\[ A_C = 3.14 \times 22 \times 10 = 3.14 \times 220 = 690.8 \text{ cm}^2 \]
(ii) Total surface area of the frustum:
TSA = CSA + Area of top base + Area of bottom base
\[ A_T = A_C + \pi r_1^2 + \pi r_2^2 \]
\[ A_T = 690.8 + 3.14 \times (14^2) + 3.14 \times (8^2) \]
\[ A_T = 690.8 + 3.14 \times 196 + 3.14 \times 64 \]
\[ A_T = 690.8 + 615.44 + 200.96 \]
\[ A_T = 1507.2 \text{ cm}^2 \]
(iii) Volume of the frustum:
\[ V = \frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2) \]
\[ V = \frac{1}{3} \times 3.14 \times 8 \times (14^2 + 8^2 + 14 \times 8) \]
\[ V = \frac{25.12}{3} \times (196 + 64 + 112) \]
\[ V = \frac{25.12}{3} \times (372) \]
\[ V = 25.12 \times 124 \]
\[ V = 3114.88 \text{ cm}^3 \]
Step 4: Final Answer:
(i) The curved surface area is 690.8 cm\(^2\).
(ii) The total surface area is 1507.2 cm\(^2\).
(iii) The volume is 3114.88 cm\(^3\).
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\))
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
सरस्वती विद्यालय, कोल्हापुर में मनाए गए 'शिक्षक दिवस' समारोह का 70 से 80 शब्दों में वृत्तांत लेखन कीजिए।
(वृत्तांत में स्थल, काल, घटना का उल्लेख होना अनिवार्य है)
निम्नलिखित जानकारी के आधार पर 50 से 60 शब्दों में विज्ञापन तैयार कीजिए :