The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\))
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.
Step 1: Understanding the Concept:
The area of a sector of a circle is a fraction of the total area of the circle, determined by the central angle of the sector. The question requires filling the blanks in the activity to calculate this area.
Step 2: Key Formula or Approach:
The area of a sector with central angle \(\theta\) and radius \(r\) is given by the formula:
\[ \text{Area of Sector} = \frac{\theta}{360^\circ} \times \pi r^2 \]
Step 3: Detailed Explanation:
Here is the completed activity with the blanks filled in.
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\pi r^2}\) = \(\frac{\boxed{90}}{360} \times 3.14 \times 10^2\)
(Calculation: \(\frac{90}{360} = \frac{1}{4}\) and \(10^2 = 100\))
= \(\frac{1}{4} \times \boxed{314}\) (since \(3.14 \times 100 = 314\))
(Calculation: \(\frac{1}{4} \times 314 = 78.5\))
A(P-AXB) = \(\boxed{78.5}\) sq. cm.
Step 4: Final Answer:
The area of the minor sector (P-AXB) is 78.5 sq. cm.
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
सरस्वती विद्यालय, कोल्हापुर में मनाए गए 'शिक्षक दिवस' समारोह का 70 से 80 शब्दों में वृत्तांत लेखन कीजिए।
(वृत्तांत में स्थल, काल, घटना का उल्लेख होना अनिवार्य है)
निम्नलिखित जानकारी के आधार पर 50 से 60 शब्दों में विज्ञापन तैयार कीजिए :