The topmost point of a vertical pole is A, bottom is D. Points B and C are between A and D. From a point E on the ground:
∠ of elevation to A = 60°,
∠ of elevation to B = 45°,
∠ of elevation to C = 30°.
Find the ratio \( AB : BC : CD \).
Let ED = \(x\), and AD = \(h\).
\(\tan 60^\circ = \frac{h}{x} \Rightarrow h = x\sqrt{3}\)
\(\tan 45^\circ = \frac{BD}{x} \Rightarrow BD = x\)
\(\tan 30^\circ = \frac{CD}{x} \Rightarrow CD = \frac{x}{\sqrt{3}}\)
Since AD = \(x\sqrt{3}\):
\(AB = AD - BD = x\sqrt{3} - x = x(\sqrt{3} - 1)\)
\(BC = BD - CD = x - \frac{x}{\sqrt{3}} = x\left(\frac{\sqrt{3} - 1}{\sqrt{3}}\right)\)
\(CD = \frac{x}{\sqrt{3}}\)
Ratio: \[ AB : BC : CD = (x(\sqrt{3} - 1)) : \Big(x\frac{\sqrt{3} - 1}{\sqrt{3}}\Big) : \frac{x}{\sqrt{3}} \] Cancelling \(x\) and multiplying by \(\sqrt{3}\): \[ (3 - \sqrt{3}) : (\sqrt{3} - 1) : 1 \]
\( AB : BC : CD = (3 - \sqrt{3}) : (\sqrt{3} - 1) : 1 \)
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
