Let the first term of the arithmetic progression be \( a = 11 \), and the common difference be \( d \).
Step 1: Sum of the first four terms.
The sum of the first four terms is:
\[
S_4 = 4 \times \frac{2a + 3d}{2} = 56
\]
Substitute \( a = 11 \):
\[
4 \times \frac{2(11) + 3d}{2} = 56
\]
Simplifying:
\[
4 \times \frac{22 + 3d}{2} = 56
\]
\[
2 \times (22 + 3d) = 56
\]
\[
44 + 6d = 56
\]
\[
6d = 12 \quad \Rightarrow \quad d = 2
\]
Step 2: Sum of the last four terms.
Now, we know that the sum of the last four terms is 112. The last four terms will have the form:
\[
a + (n-4)d, a + (n-3)d, a + (n-2)d, a + (n-1)d
\]
The sum of the last four terms is:
\[
S_{\text{last 4}} = 4 \times \frac{2(a + (n-4)d) + 3d}{2} = 112
\]
Substitute \( a = 11 \) and \( d = 2 \):
\[
4 \times \frac{2(11 + (n-4)2) + 3(2)}{2} = 112
\]
Simplifying:
\[
4 \times \frac{2(11 + 2n - 8) + 6}{2} = 112
\]
\[
4 \times \frac{2(2n + 3) + 6}{2} = 112
\]
\[
4 \times \frac{4n + 6 + 6}{2} = 112
\]
\[
4 \times \frac{4n + 12}{2} = 112
\]
\[
2 \times (4n + 12) = 112
\]
\[
8n + 24 = 112
\]
\[
8n = 88 \quad \Rightarrow \quad n = 11
\]
Step 3: Conclusion.
Thus, the number of terms is \( \boxed{11} \).