Given sum is \( S_n = 1 + 3 + 11 + 25 + 45 + 71 + ... + T_n \)
First order differences are in A.P.
Thus, we can assume that \( T_n = an^2 + bn + c \)
Solving \( \begin{cases} T_1 = 1 = a + b + c T_2 = 3 = 4a + 2b + c \\T_3 = 11 = 9a + 3b + c \end{cases} \)
we get a = 3, b = -7, c = 5
Hence, general term of given series is \( T_n = 3n^2 - 7n + 5 \)
Hence, required sum equals \( \sum_{n=1}^{20} (3n^2 - 7n + 5) = 3\frac{20 \cdot 21 \cdot 41}{6} - 7\frac{20 \cdot 21}{2} + 5(20) = 7240 \)
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: