Given sum is \( S_n = 1 + 3 + 11 + 25 + 45 + 71 + ... + T_n \)
First order differences are in A.P.
Thus, we can assume that \( T_n = an^2 + bn + c \)
Solving \( \begin{cases} T_1 = 1 = a + b + c T_2 = 3 = 4a + 2b + c \\T_3 = 11 = 9a + 3b + c \end{cases} \)
we get a = 3, b = -7, c = 5
Hence, general term of given series is \( T_n = 3n^2 - 7n + 5 \)
Hence, required sum equals \( \sum_{n=1}^{20} (3n^2 - 7n + 5) = 3\frac{20 \cdot 21 \cdot 41}{6} - 7\frac{20 \cdot 21}{2} + 5(20) = 7240 \)
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).